IRP researchers supercharge ordinary clinical device to get a better look at the back of the eye
New technique brings retina into sharper focus
Scientists at the National Institutes of Health (NIH) have leveraged artificial intelligence to transform a device designed to see tissues in the back of the eye into one sharp enough to make out individual cells. The technique provides imaging resolution that rivals the most advanced devices available and is cheaper, faster, and doesn’t require specialized equipment or expertise. The strategy has implications for early detection of disease and for the monitoring of treatment response by making what was once invisible now visible.
“AI potentially puts next-generation imaging in the hands of standard eye clinics. It’s like adding a high-resolution lens to a basic camera.” said Johnny Tam, Ph.D., investigator at NIH’s National Eye Institute and senior author of the study report, which published in Communications Medicine.
Imaging devices, known as ophthalmoscopes, are widely used to examine the light-sensing retina in the back of the eye. A scanning laser ophthalmoscope is standard in eye clinics, but its resolution can only make out structures at the tissue level — things such as lesions, blood vessels, and the optic nerve head. Next-generation ophthalmoscopes enabled with adaptive optics — a technology that compensates for light distortion—can make out cellular features, providing greater diagnostic information. However, adaptive optics-enabled imaging is still in the experimental phase.

Comparison of the same patch of retina labeled with indocyanine green and visualized 3 different ways. A) Scanning laser ophthalmoscopy. B) AI-enhanced scanning laser ophthalmoscopy. C) Adaptive optics scanning laser ophthalmoscopy. Arrows highlight the same cell seen in different modalities.
This page was last updated on Wednesday, April 23, 2025