IRP researchers create new viral vector for improved gene therapy in sickle cell disease

‘Forward-oriented’ design might boost treatment effectiveness and broaden use

Researchers at the National Institutes of Health have developed a new and improved viral vector — a virus-based vehicle that delivers therapeutic genes — for use in gene therapy for sickle cell disease. In advanced lab tests using animal models, the new vector was up to 10 times more efficient at incorporating corrective genes into bone marrow stem cells than the conventional vectors currently used, and it had a carrying capacity of up to six times higher, the researchers report.

The development of the vector could make gene therapy for sickle cell disease much more effective and pave the way for wider use of it as a curative approach for the painful, life-threatening blood disorder. Sickle cell disease affects about 100,000 people in the United States and millions worldwide.

“Our new vector is an important breakthrough in the field of gene therapy for sickle cell disease,” said study senior author John Tisdale, M.D., chief of the Cellular and Molecular Therapeutic Branch at the National Heart, Lung, and Blood Institute (NHLBI). “It’s the new kid on the block and represents a substantial improvement in our ability to produce high capacity, high efficiency vectors for treating this devastating disorder.”

Diagram shows steps involved in conducting gene therapy for sickle cell disease

Diagram shows steps involved in conducting gene therapy for sickle cell disease.

Read more View All News

This page was last updated on Friday, January 21, 2022