Skip to main content
 

John A. Hanover, Ph.D.

Senior Investigator

Laboratory of Cell and Molecular Biology

NIDDK

Building 8, Room B127
8 Center Drive
Bethesda, MD 20814

301-496-0943

jah@helix.nih.gov

Research Topics

Current Research

Our laboratory focuses on (1) the molecular features of a novel, glycan-dependent, signal transduction cascade and (2) the mechanism of nuclear transport. The nuclear transport of transcription factors, nuclear kinases, steroid hormone receptors, and replication factors often serves a critical regulatory function. We are examining the mechanisms of nuclear import, export, and subnuclear targeting. We identified a novel nuclear transport pathway involving calmodulin.  This pathway has been shown to play a role in mammalian sex determination and stem cell differentiation. We are identifying additional components of this pathway using yeast genetics and chemical biology approaches. 

The nuclear pore complex (NPC) mediates the transport of mRNA and proteins across the nuclear envelope. Many components of the nuclear pore are modified by a novel modification: O-linked N-acetylglucosamine (O-linked GlcNAc). The modification also occurs on transcription factors and certain oncogenes and tumor suppressors. Current evidence suggests that the O-linked GlcNAc transferase (OGT) mediates a novel glycan-dependent signal transduction pathway. We have molecularly cloned and characterized the human OGT responsible for glycosylating nuclear pore proteins.  This enzyme is expressed as differentially targeted isoforms in man and is localized to both the nucleus and the mitochondria. When expressed in E. coli, the human OGT is catalytically active. We recently solved the X-ray structure of the substrate recognition domain of OGT and we are beginning to understand how it recognizes its many intracellular targets. Although the enzyme is found in a number of target tissues, it is most highly expressed in human pancreatic beta cells, consistent with a role in glucose-sensing. Based on its substrate specificity and molecular features, we have proposed that OGT is the terminal step in a glucose-responsive pathway that becomes dysregulated in diabetes mellitus (NIDDM). 

Applying our Research

Our studies may provide insight into how nutrition may impact the health of both mother and offspring.  

Need for Further Study

The enzyme catalyzing O-GlcNAc removal, O-GlcNAcase, has also been identified, expressed, and shown to exist as differentially targeted isoforms in man. We are also using the genetically amenable C. elegans model to examine the physiological impact of the enzymes of O-GlcNAc cycling. Using reverse genetics, knockout, and other transgenic models, we are currently exploring the role of these essential genes in signal transduction and pathogenesis of diabetes mellitus. Our studies further suggest that O-GlcNAc cycling plays a key role in the regulation of chromatin structure and may be a key player in epigenetic reprogramming in response to nutrition and other environmental influences.

Biography

  • Ph.D., Johns Hopkins University School of Medicine, 1981
  • B.S., University of Tulsa, 1976

Selected Publications

  1. Bond MR, Hanover JA. A little sugar goes a long way: the cell biology of O-GlcNAc. J Cell Biol. 2015;208(7):869-80.
  2. Keembiyehetty C, Love DC, Harwood KR, Gavrilova O, Comly ME, Hanover JA. Conditional knock-out reveals a requirement for O-linked N-Acetylglucosaminase (O-GlcNAcase) in metabolic homeostasis. J Biol Chem. 2015;290(11):7097-113.
  3. Lewis BA, Hanover JA. O-GlcNAc and the epigenetic regulation of gene expression. J Biol Chem. 2014;289(50):34440-8.
  4. Vigetti D, Deleonibus S, Moretto P, Bowen T, Fischer JW, Grandoch M, Oberhuber A, Love DC, Hanover JA, Cinquetti R, Karousou E, Viola M, D'Angelo ML, Hascall VC, De Luca G, Passi A. Natural antisense transcript for hyaluronan synthase 2 (HAS2-AS1) induces transcription of HAS2 via protein O-GlcNAcylation. J Biol Chem. 2014;289(42):28816-26.
  5. Abd-Elmoniem KZ, Bakalov VK, Matta JR, Muldoon N, Hanover JA, Bondy CA, Gharib AM. X chromosome parental origin and aortic stiffness in turner syndrome. Clin Endocrinol (Oxf). 2014;81(3):467-70.
This page was last updated on May 19th, 2015