Skip to main content

Hot Topics

Research advances from the National Institutes of Health (NIH) Intramural Research Program (IRP) are often published in high-impact journals. Read some of our recent articles:

Authors: Pratto F, Brick K, Khil P, Smagulova F, Petukhova GV, Camerini-Otero RD

Journal: Science. 2014 Nov 14;346(6211):1256442. doi: 10.1126/science.1256442

DNA double-strand breaks (DSBs) are introduced in meiosis to initiate recombination and generate crossovers, the reciprocal exchanges of genetic material between parental chromosomes. Here, we present high-resolution maps of meiotic DSBs in individual human genomes. Comparing DSB maps between individuals shows that along with DNA binding by PRDM9, additional factors may dictate the efficiency of DSB formation. We find evidence for both GC-biased gene conversion and mutagenesis around meiotic DSB hotspots, while frequent colocalization of DSB hotspots with chromosome rearrangement breakpoints implicates the aberrant repair of meiotic DSBs in genomic disorders. Furthermore, our data indicate that DSB frequency is a major determinant of crossover rate. These maps provide new insights into the regulation of meiotic recombination and the impact of meiotic recombination on genome function.

Authors: Lujan SA, Clausen AR, Clark AB, MacAlpine HK, MacAlpine DM, Malc EP, Mieczkowski PA, Burkholder AB, Fargo DC, Gordenin DA, Kunkel TA

Journal: Genome Res. 2014 Sep 12. pii: gr.178335.114. [Epub ahead of print]

Mutational heterogeneity must be taken into account when reconstructing evolutionary histories, calibrating molecular clocks, and predicting links between genes and disease. Selective pressures and various DNA transactions have been invoked to explain the heterogeneous distribution of genetic variation between species, within populations, and in tissue-specific tumors. To examine relationships between such heterogeneity and variations in leading- and lagging-strand replication fidelity and mismatch repair, we accumulated 40,000 spontaneous mutations in eight diploid yeast strains in the absence of selective pressure. We found that replicase error rates vary by fork direction, coding state, nucleosome proximity, and sequence context. Further, error rates and DNA mismatch repair efficiency both vary by mismatch type, responsible polymerase, replication time, and replication origin proximity. Mutation patterns implicate replication infidelity as one driver of variation in somatic and germ line evolution, suggest mechanisms of mutual modulation of genome stability and composition, and predict future observations in specific cancers.

Authors: Oldfield AJ, Yang P, Conway AE, Cinghu S, Freudenberg JM, Yellaboina S, Jothi R

Journal: Mol Cell. 2014 Sep 4;55(5):708-22. doi: 10.1016/j.molcel.2014.07.005

Cell type-specific master transcription factors (TFs) play vital roles in defining cell identity and function. However, the roles ubiquitous factors play in the specification of cell identity remain underappreciated. Here we show that the ubiquitous CCAAT-binding NF-Y complex is required for the maintenance of embryonic stem cell (ESC) identity and is an essential component of the core pluripotency network. Genome-wide studies in ESCs and neurons reveal that NF-Y regulates not only genes with housekeeping functions through cell type-invariant promoter-proximal binding, but also genes required for cell identity by binding to cell type-specific enhancers with master TFs. Mechanistically, NF-Y's distinct DNA-binding mode promotes master/pioneer TF binding at enhancers by facilitating a permissive chromatin conformation. Our studies unearth a conceptually unique function for histone-fold domain (HFD) protein NF-Y in promoting chromatin accessibility and suggest that other HFD proteins with analogous structural and DNA-binding properties may function in similar ways.

Authors: Chen J, Liu J

Journal: Nat Commun. 2014 Sep 12;5:4795. doi: 10.1038/ncomms5795

The spindle assembly checkpoint arrests mitotic progression until each kinetochore secures a stable attachment to the spindle. Despite fluctuating noise, this checkpoint remains robust and remarkably sensitive to even a single unattached kinetochore among many attached kinetochores; moreover, the checkpoint is silenced only after the final kinetochore-spindle attachment. Experimental observations have shown that checkpoint components stream from attached kinetochores along microtubules towards spindle poles. Here we incorporate this streaming behaviour into a theoretical model that accounts for the robustness of checkpoint silencing. Poleward streams are integrated at spindle poles, but are diverted by any unattached kinetochore; consequently, accumulation of checkpoint components at spindle poles increases markedly only when every kinetochore is properly attached. This step change robustly triggers checkpoint silencing after, and only after, the final kinetochore-spindle attachment. Our model offers a conceptual framework that highlights the role of spatiotemporal regulation in mitotic spindle checkpoint signalling and fidelity of chromosome segregation.

Authors: Ha HL, Wang H, Pisitkun P, Kim JC, Tassi I, Tang W, Morasso MI, Udey MC, Siebenlist U

Journal: Proc Natl Acad Sci U S A. 2014 Aug 4. pii: 201400513. [Epub ahead of print]

Psoriasis is a chronic inflammatory skin disease characterized by abnormal keratinocyte proliferation and differentiation and by an influx of inflammatory cells. The mechanisms underlying psoriasis in humans and in mouse models are poorly understood, although evidence strongly points to crucial contributions of IL-17 cytokines, which signal via the obligatory adaptor CIKS/Act1. Here we identify critical roles of CIKS/Act1-mediated signaling in imiquimod-induced psoriatic inflammation, a mouse model that shares features with the human disease. We found that IL-17 cytokines/CIKS-mediated signaling into keratinocytes is essential for neutrophilic microabscess formation and contributes to hyperproliferation and markedly attenuated differentiation of keratinocytes, at least in part via direct effects. In contrast, IL-17 cytokines/CIKS-mediated signaling into nonkeratinocytes, particularly into dermal fibroblasts, promotes cellular infiltration and, importantly, leads to enhanced the accumulation of IL-17-producing γδT cells in skin, comprising a positive feed-forward mechanism. Thus, CIKS-mediated signaling is central in the development of both dermal and epidermal hallmarks of psoriasis, inducing distinct pathologies via target cell-specific effects. CIKS-mediated signaling represents a potential therapeutic target in psoriasis.

Authors: Tang S, Huang G, Fan W, Chen Y, Ward JM, Xu X, Xu Q, Kang A, McBurney MW, Fargo DC, Hu G, Baumgart-Vogt E, Zhao Y, Li X

Journal: Mol Cell. 2014 Aug 20. pii: S1097-2765(14)00604-2. doi: 10.1016/j.molcel.2014.07.011. [Epub ahead of print]

Retinoid homeostasis is critical for normal embryonic development. Both the deficiency and excess of these compounds are associated with congenital malformations. Here we demonstrate that SIRT1, the most conserved mammalian NAD+-dependent protein deacetylase, contributes to homeostatic retinoic acid (RA) signaling and modulates mouse embryonic stem cell (mESC) differentiation in part through deacetylation of cellular retinoic acid binding protein II (CRABPII). We show that RA-mediated acetylation of CRABPII at K102 is essential for its nuclear accumulation and subsequent activation of RA signaling. SIRT1 interacts with and deacetylates CRABPII, regulating its subcellular localization. Consequently, SIRT1 deficiency induces hyperacetylation and nuclear accumulation of CRABPII, enhancing RA signaling and accelerating mESC differentiation in response to RA. Consistently, SIRT1 deficiency is associated with elevated RA signaling and development defects in mice. Our findings reveal a molecular mechanism that regulates RA signaling and highlight the importance of SIRT1 in regulation of ESC pluripotency and embryogenesis.

Authors: Warner KD1, Chen MC1, Song W2, Strack RL2, Thorn A3, Jaffrey SR2, Ferré-D'Amaré AR

Journal: Nat Struct Mol Biol. 2014 Aug;21(8):658-63. doi: 10.1038/nsmb.2865

GFP and its derivatives revolutionized the study of proteins. Spinach is a recently reported in vitro-evolved RNA mimic of GFP, which as genetically encoded fusions makes possible live-cell, real-time imaging of biological RNAs without resorting to large RNA-binding protein-GFP fusions. To elucidate the molecular basis of Spinach fluorescence, we solved the cocrystal structure of Spinach bound to its cognate exogenous chromophore, showing that Spinach activates the small molecule by immobilizing it between a base triple, a G-quadruplex and an unpaired G. Mutational and NMR analyses indicate that the G-quadruplex is essential for Spinach fluorescence, is also present in other fluorogenic RNAs and may represent a general strategy for RNAs to induce fluorescence of chromophores. The structure guided the design of a miniaturized 'Baby Spinach', and it provides a foundation for structure-driven design and tuning of fluorescent RNAs.

Authors: Kitahara CM, Flint AJ, Berrington de Gonzalez A, Bernstein L, Brotzman M, MacInnis RJ, Moore SC, Robien K, Rosenberg PS, Singh PN, Weiderpass E, Adami HO, Anton-Culver H, Ballard-Barbash R, Buring JE, Freedman DM, Fraser GE, Beane Freeman LE, Gapstur SM, Gaziano JM, Giles GG, Håkansson N, Hoppin JA, Hu FB, Koenig K, Linet MS, Park Y, Patel AV, Purdue MP, Schairer C, Sesso HD, Visvanathan K, White E, Wolk A, Zeleniuch-Jacquotte A, Hartge P

Journal: PLoS Med. 2014 Jul 8;11(7):e1001673. doi: 10.1371/journal.pmed.1001673

BACKGROUND:  The prevalence of class III obesity (body mass index [BMI]≥40 kg/m2) has increased dramatically in several countries and currently affects 6% of adults in the US, with uncertain impact on the risks of illness and death. Using data from a large pooled study, we evaluated the risk of death, overall and due to a wide range of causes, and years of life expectancy lost associated with class III obesity.

METHODS AND FINDINGS:  In a pooled analysis of 20 prospective studies from the United States, Sweden, and Australia, we estimated sex- and age-adjusted total and cause-specific mortality rates (deaths per 100,000 persons per year) and multivariable-adjusted hazard ratios for adults, aged 19-83 y at baseline, classified as obese class III (BMI 40.0-59.9 kg/m2) compared with those classified as normal weight (BMI 18.5-24.9 kg/m2). Participants reporting ever smoking cigarettes or a history of chronic disease (heart disease, cancer, stroke, or emphysema) on baseline questionnaires were excluded. Among 9,564 class III obesity participants, mortality rates were 856.0 in men and 663.0 in women during the study period (1976-2009). Among 304,011 normal-weight participants, rates were 346.7 and 280.5 in men and women, respectively. Deaths from heart disease contributed largely to the excess rates in the class III obesity group (rate differences = 238.9 and 132.8 in men and women, respectively), followed by deaths from cancer (rate differences = 36.7 and 62.3 in men and women, respectively) and diabetes (rate differences = 51.2 and 29.2 in men and women, respectively). Within the class III obesity range, multivariable-adjusted hazard ratios for total deaths and deaths due to heart disease, cancer, diabetes, nephritis/nephrotic syndrome/nephrosis, chronic lower respiratory disease, and influenza/pneumonia increased with increasing BMI. Compared with normal-weight BMI, a BMI of 40-44.9, 45-49.9, 50-54.9, and 55-59.9 kg/m2 was associated with an estimated 6.5 (95% CI: 5.7-7.3), 8.9 (95% CI: 7.4-10.4), 9.8 (95% CI: 7.4-12.2), and 13.7 (95% CI: 10.5-16.9) y of life lost. A limitation was that BMI was mainly ascertained by self-report.

CONCLUSIONS:  Class III obesity is associated with substantially elevated rates of total mortality, with most of the excess deaths due to heart disease, cancer, and diabetes, and major reductions in life expectancy compared with normal weight. Please see later in the article for the Editors' Summary.

Authors: Maldarelli F, Wu X, Su L, Simonetti FR, Shao W, Hill S, Spindler J, Ferris AL, Mellors JW, Kearney MF, Coffin JM, Hughes SH

Journal: Science. 2014 Jul 11;345(6193):179-83. doi: 10.1126/science.1254194

The persistence of HIV-infected cells in individuals on suppressive combination antiretroviral therapy (cART) presents a major barrier for curing HIV infections. HIV integrates its DNA into many sites in the host genome; we identified 2410 integration sites in peripheral blood lymphocytes of five infected individuals on cART. About 40% of the integrations were in clonally expanded cells. Approximately 50% of the infected cells in one patient were from a single clone, and some clones persisted for many years. There were multiple independent integrations in several genes, including MKL2 and BACH2; many of these integrations were in clonally expanded cells. Our findings show that HIV integration sites can play a critical role in expansion and persistence of HIV-infected cells.

Authors: Zhang J, Tan D, DeRose EF, Perera L, Dominski Z, Marzluff WF, Tong L, Hall TM

Journal: Proc Natl Acad Sci U S A. 2014 Jul 22;111(29):E2937-46. doi: 10.1073/pnas.1406381111

Replication-dependent histone mRNAs end with a conserved stem loop that is recognized by stem-loop-binding protein (SLBP). The minimal RNA-processing domain of SLBP is phosphorylated at an internal threonine, and Drosophila SLBP (dSLBP) also is phosphorylated at four serines in its 18-aa C-terminal tail. We show that phosphorylation of dSLBP increases RNA-binding affinity dramatically, and we use structural and biophysical analyses of dSLBP and a crystal structure of human SLBP phosphorylated on the internal threonine to understand the striking improvement in RNA binding. Together these results suggest that, although the C-terminal tail of dSLBP does not contact the RNA, phosphorylation of the tail promotes SLBP conformations competent for RNA binding and thereby appears to reduce the entropic penalty for the association. Increased negative charge in this C-terminal tail balances positively charged residues, allowing a more compact ensemble of structures in the absence of RNA.