Xiaoyuan Chen, Ph.D.

Senior Investigator

Laboratory of Molecular Imaging and Nanomedicine

NIBIB

Building 35A, Room GD937
35 Convent Drive
Bethesda, MD 20892

301-451-4246

Shawn.chen@nih.gov

Research Topics

LOMIN specializes in synthesizing molecular imaging probes for positron emission tomography (PET), single-photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), optical (bioluminescence, fluorescence and Raman), contrast enhanced ultrasound, photoacoustic imaging, as well as multimodality imaging. This research group aims to develop molecular imaging toolbox for better understanding of biology, early diagnosis of disease, monitoring therapy response, and guiding drug discovery/development. LOMIN puts special emphasis on high-sensitivity nanosensors for biomarker detection and theranostic nanomedicine for imaging, gene and drug delivery, and monitoring of treatment. Research interests and ongoing projects include:

  • Ultrasensitive methods for multiplexed biomarker detection
  • Construction of nanoparticle platforms for effective drug and gene delivery
  • Probe synthesis for multimodality whole-body imaging of both extracellular and intracellular events
  • Clinical translation of molecular imaging probes targeting important biological processes
  • “All-in-one” theranostics for detection and monitoring of diseases as well as delivery of therapeutics

Biography

Dr. Chen received his BS (1993) and MS (1996) in chemistry from Nanjing University. He then came to the United States, where he completed his PhD degree (1999) in 3 years at the University of Idaho, under the supervision of Prof. Chien M. Wai. He was involved in chelation chemistry of alpha-emitting radionuclides. He then moved to upstate New York and spent 16 months as a postdoc at Syracuse University working with Prof. Jon Zubieta, where he learned crystallography and coordination chemistry of technetium and rhenium. Although his second postdoc at the Washington University in St. Louis was short, he was profoundly influenced by his mentor, Prof. Michael J Welch, who is renowned for applying modern chemistry to the preparation of radiopharmaceuticals in medical imaging.

He joined the University of Southern California as an Assistant Professor in 2002. By working with Prof. Peter Conti and Prof. James Bading, he pioneered multimodality imaging of angiogenesis marker integrin αvβ3. In 2004, he moved to the Molecular Imaging Program at Stanford (MIPS) under the directorship of Prof. Sanjiv Sam Gambhir, and was promoted to Associate Professor in 2008. During his tenure at Stanford, he successfully translated 18F-labeled RGD peptide dimer into clinic for first-in-human imaging studies. In the summer of 2009, he joined the intramural research program of the National Institute of Biomedical Imaging and Bioengineering (NIBIB) as a Senior Investigator and Lab Chief.

Dr. Chen has published over 550 peer-reviewed papers (H-index > 100) and numerous books and book chapters. He sits on the editorial board of over 10 peer-reviewed journals such as ACS Nano and is the founding editor of journal "Theranostics" (2015 IF = 8.854).

Selected Publications

  1. Wang F, Wang Z, Hida N, Kiesewetter DO, Ma Y, Yang K, Rong P, Liang J, Tian J, Niu G, Chen X. A cyclic HSV1-TK reporter for real-time PET imaging of apoptosis. Proc Natl Acad Sci U S A. 2014;111(14):5165-70.

  2. Wang Z, Wang Z, Liu D, Yan X, Wang F, Niu G, Yang M, Chen X. Biomimetic RNA-silencing nanocomplexes: overcoming multidrug resistance in cancer cells. Angew Chem Int Ed Engl. 2014;53(7):1997-2001.

  3. Sun X, Huang X, Guo J, Zhu W, Ding Y, Niu G, Wang A, Kiesewetter DO, Wang ZL, Sun S, Chen X. Self-illuminating 64Cu-doped CdSe/ZnS nanocrystals for in vivo tumor imaging. J Am Chem Soc. 2014;136(5):1706-9.

  4. Huang P, Lin J, Li W, Rong P, Wang Z, Wang S, Wang X, Sun X, Aronova M, Niu G, Leapman RD, Nie Z, Chen X. Biodegradable gold nanovesicles with an ultrastrong plasmonic coupling effect for photoacoustic imaging and photothermal therapy. Angew Chem Int Ed Engl. 2013;52(52):13958-64.

  5. Liu D, Wang Z, Jin A, Huang X, Sun X, Wang F, Yan Q, Ge S, Xia N, Niu G, Liu G, Hight Walker AR, Chen X. Acetylcholinesterase-catalyzed hydrolysis allows ultrasensitive detection of pathogens with the naked eye. Angew Chem Int Ed Engl. 2013;52(52):14065-9.


This page was last updated on April 10th, 2017