Skip to main content
 

Thomas Anthony Wynn, Ph.D.

Senior Investigator

Immunopathogenesis Section

NIAID/DIR

Building 4, Room 211
4 Memorial Drive
Bethesda, MD 20892

301-496-4758

TWYNN@niaid.nih.gov

Research Topics

The researchers in the Immunopathogenesis Section (IPS) in LPD/NIAID investigate the immunological and molecular mechanisms of fibrosis, a major cause of morbidity and mortality in many chronic diseases, including asthma, liver cirrhosis, cardiovascular disease, idiopathic pulmonary fibrosis, Crohn’s disease, and ulcerative colitis. The ultimate goal of our research program is to identify novel therapies for fibrotic diseases, for which few viable therapeutic strategies currently exist. The IPS research program relies heavily on transgenic and knockout mouse models to dissect the mechanisms of fibrosis and focuses on three major organs systems, including the liver, lung, and gastrointestinal tract. We also utilize a variety of biopsy tissues obtained from patients suffering from various forms of progressive fibrotic disease.

Fibrotic tissue remodeling is the final common pathological outcome of many chronic inflammatory and infectious diseases. Although the synthesis of extracellular matrix components like collagen is an indispensable and, typically, reversible part of all wound-healing responses, normal tissue repair can evolve into a progressively irreversible fibrotic response if the tissue injury is severe or repetitive or if the wound-healing response itself becomes dysregulated. Indeed, tissue repair and regeneration are critical biological processes that are fundamental to the survival of all living organisms. When tissues are injured during infection or after toxic or mechanical injury, an inflammatory response is induced in response to damage-associated molecular patterns and pathogen-associated molecular patterns released by dead and dying cells and invading organisms, respectively. These molecular triggers induce a complex inflammatory response that is characterized by the recruitment, proliferation, and activation of a variety of hematopoietic and non-hematopoietic cells, including neutrophils, macrophages, innate lymphoid cells, natural killer cells, B cells, T cells, fibroblasts, epithelial cells, endothelial cells, stem cells, and specialized tissue progenitor cells, which together make up the cellular response that orchestrates tissue repair. When the wound-healing response is well organized and controlled, the inflammatory response resolves quickly, and normal tissue architecture is restored. However, if the wound-healing response is chronic or becomes dysregulated, it can lead to the development of pathological fibrosis or scarring, impairing normal tissue function and ultimately leading to organ failure and death. Therefore, wound-healing responses must be tightly regulated. Although fibrogenesis is increasingly recognized as a major cause of morbidity and mortality, there are few—if any—treatment strategies that specifically target the mechanisms of fibrosis, despite the fact that nearly 45 percent of all deaths in the developed world are attributable to fibroproliferative disorders.

The IPS investigates the mechanisms of tissue regeneration and fibrosis and is particularly interested in understanding the role of stem cells and tissue progenitor cells in wound-repair responses more generally. As we were the first group to demonstrate a central and indispensable role for IL-13 in the development of fibrosis, our research program continues to focus on IL-13 biology, with particular emphasis on the role of the IL-13 signaling and decoy receptors. Identifying the key cellular targets of IL-13 has also been emphasized in our research, as we hypothesize that any intervention that disrupts critical steps in the IL-13 response might emerge as a viable therapeutic strategy for fibrosis.

Specific aims of the IPS include the following:

  • Identify core mechanisms of fibrosis in various organ systems and/or diseases, including persistent asthma, idiopathic pulmonary fibrosis, liver fibrosis, and inflammatory bowel disease
  • Characterize the IL-13 pathway of fibrosis and elucidate the function of novel downstream target genes that are regulated by Th2-associated cytokines
  • Understand the link between inflammatory mediators like IL-1, TNF-alpha, and IL-17 and the core pro-fibrotic cytokines TGF-beta and IL-13 in various types of fibrosis
  • Elucidate the role of monocyte and macrophage subsets in wound healing, chronic inflammation, and fibrosis progression and resolution
  • Investigate the therapeutic potential of macrophages and stem/tissue progenitor cells in tissue regeneration and fibrosis
  • Translate findings from mice to humans by establishing relevant preclinical models of fibrosis, so that novel therapies for liver fibrosis and other chronic fibroproliferative disorders might be evaluated

Biography

Dr. Wynn is a senior investigator and chief of the Immunopathogenesis Section of the Laboratory of Parasitic Diseases. He also serves as the scientific director of the NIH-Oxford-Cambridge Scholars program, a doctoral training program for outstanding science students committed to biomedical research, which annually supports more than 64 doctoral candidates at NIH, Oxford University, and Cambridge University. Dr. Wynn obtained his Ph.D. from the University of Wisconsin-Madison Medical School in the department of microbiology and immunology. His laboratory group uses in vivo model systems to study the immunological mechanisms of inflammation and fibrosis. He has published over 200 papers, reviews, and book chapters in many prestigious journals, including Nature, Nature Immunology, Journal of Experimental Medicine, Gastroenterology, Nature Reviews Immunology, Nature Medicine, and Annual Review of Immunology. He has made important contributions to our understanding of the role of IL-13, IL-17A, and macrophages in the pathogenesis of fibrosis in multiple organ systems and has developed clinically relevant models to test novel anti-fibrotic drugs. His group collaborates extensively with the pharmaceutical industry to accelerate the translation of basic science discoveries into novel treatments for patients. Dr. Wynn was elected to fellowship in the American Academy of Microbiology in 2013 and has received several prestigious awards, including the Bailey K. Ashford Medal from the American Society of Tropical Medicine and Hygiene, the Oswaldo Cruz Medal from the Oswaldo Cruz Foundation, and two Merit Awards from NIH. Dr. Wynn has organized several national and international scientific meetings, including three Keystone Symposia and the first Aegean conference on Tissue Repair, Regeneration, and Fibrosis.

Selected Publications

  1. Wynn TA, Vannella KM. Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immunity. 2016;44(3):450-62.
  2. Vannella KM, Ramalingam TR, Hart KM, de Queiroz Prado R, Sciurba J, Barron L, Borthwick LA, Smith AD, Mentink-Kane M, White S, Thompson RW, Cheever AW, Bock K, Moore I, Fitz LJ, Urban JF Jr, Wynn TA. Acidic chitinase primes the protective immune response to gastrointestinal nematodes. Nat Immunol. 2016;17(5):538-44.
  3. Gieseck RL 3rd, Ramalingam TR, Hart KM, Vannella KM, Cantu DA, Lu WY, Ferreira-González S, Forbes SJ, Vallier L, Wynn TA. Interleukin-13 Activates Distinct Cellular Pathways Leading to Ductular Reaction, Steatosis, and Fibrosis. Immunity. 2016;45(1):145-58.
  4. Vannella KM, Ramalingam TR, Borthwick LA, Barron L, Hart KM, Thompson RW, Kindrachuk KN, Cheever AW, White S, Budelsky AL, Comeau MR, Smith DE, Wynn TA. Combinatorial targeting of TSLP, IL-25, and IL-33 in type 2 cytokine-driven inflammation and fibrosis. Sci Transl Med. 2016;8(337):337ra65.
This page was last updated on April 20th, 2016