Andrew J. Griffith, M.D., Ph.D.

Senior Investigator

Molecular Biology and Genetics Section


Scientific Director


Porter Neuroscience Research Center, Room GF103
35 Convent Drive
Bethesda, MD 20892


Research Topics

Our laboratory identifies and characterizes genes, molecules, and mechanisms underlying hearing and hereditary hearing loss. We use molecular biologic and genetic approaches, human and mouse models, as well as heterologous cell culture expression systems. A variety of techniques—including in situ hybridization, immunohistochemistry, RT-PCR, Western and Northern blotting, and immunoprecipitation—are used to analyze gene and protein expression, function, and interactions. We aim to identify potential therapeutic opportunities in animal models for translation to clinical interventions.


Dr. Griffith received M.D. and Ph.D. degrees from Yale University. He completed an Otolaryngology-Head and Neck Surgery residency at the University of Michigan, where he also received fellowship training in the laboratory of Dr. Miriam Meisler in the Department of Human Genetics.

Selected Publications

  1. Kawashima Y, Géléoc GS, Kurima K, Labay V, Lelli A, Asai Y, Makishima T, Wu DK, Della Santina CC, Holt JR, Griffith AJ. Mechanotransduction in mouse inner ear hair cells requires transmembrane channel-like genes. J Clin Invest. 2011;121(12):4796-809.

  2. Choi BY, Kim HM, Ito T, Lee KY, Li X, Monahan K, Wen Y, Wilson E, Kurima K, Saunders TL, Petralia RS, Wangemann P, Friedman TB, Griffith AJ. Mouse model of enlarged vestibular aqueducts defines temporal requirement of Slc26a4 expression for hearing acquisition. J Clin Invest. 2011;121(11):4516-25.

  3. Kurima K, Ebrahim S, Pan B, Sedlacek M, Sengupta P, Millis BA, Cui R, Nakanishi H, Fujikawa T, Kawashima Y, Choi BY, Monahan K, Holt JR, Griffith AJ, Kachar B. TMC1 and TMC2 Localize at the Site of Mechanotransduction in Mammalian Inner Ear Hair Cell Stereocilia. Cell Rep. 2015;12(10):1606-17.

  4. Pan B, Géléoc GS, Asai Y, Horwitz GC, Kurima K, Ishikawa K, Kawashima Y, Griffith AJ, Holt JR. TMC1 and TMC2 are components of the mechanotransduction channel in hair cells of the mammalian inner ear. Neuron. 2013;79(3):504-15.

  5. Kurima K, Peters LM, Yang Y, Riazuddin S, Ahmed ZM, Naz S, Arnaud D, Drury S, Mo J, Makishima T, Ghosh M, Menon PS, Deshmukh D, Oddoux C, Ostrer H, Khan S, Riazuddin S, Deininger PL, Hampton LL, Sullivan SL, Battey JF Jr, Keats BJ, Wilcox ER, Friedman TB, Griffith AJ. Dominant and recessive deafness caused by mutations of a novel gene, TMC1, required for cochlear hair-cell function. Nat Genet. 2002;30(3):277-84.

This page was last updated on March 10th, 2015